
Disaster Simulation: An AnyLogic
Agent-Based Approach

Ali Asgary
ADERSIM

York University
2017

Example:
Flood simulation and evacuation

GIS Environment

Lesson 4: Defining Agents’ Behavior-
Sensor

• Defining agents’ behavior using statechart

• Working with transitions and their triggers.

Ali Asgary, ADERSIM, York University, 2017

Defining a simple statechart for sensor
agent

We want sensor to react to flood agent and pass the flood information to
decision makers or residents (in this version of the model to residents).
To do this we use statecharts to define different states of the Sensor agent.
We assume that Sensor has two states:
Normal: when water level is below certain level (no flood).
Flooding: when water level is above the normal level (flooding)

Sensor continuously checks the river (once every second) . If flood agent is
sensed it chanes its state from Normal to Flooding. It then sends a warning to
the people in the town.

Ali Asgary, ADERSIM, York University, 2017

Sensor

Flood

warning

Open Sensors window

Double click on Sensor to open its window.

Ali Asgary, ADERSIM, York University, 2017

Expand Statechard tools

Click on the Palette tab
and click on Statechart
tools.

Ali Asgary, ADERSIM, York University, 2017

Creating a statechart
To create a statechart for your Sensor you need
to drag and drop a Statechart Entery Point to
your Sensor window.

Ali Asgary, ADERSIM, York University, 2017

Adding states
You can add a state by dragging and dropping a
state from the Statechart tools to your Sensor
space.

Ali Asgary, ADERSIM, York University, 2017

Make sure that the state is connected to the
Statechart Entry Point

Change the state name to Normal
Click on the state that you just created and in
the property window change its name to Normal

Ali Asgary, ADERSIM, York University, 2017

Change the state color
Using the state property window change the Fill
color to lime.

Ali Asgary, ADERSIM, York University, 2017

Defining some actions
Now that we have created the state we need to add a
transition inside it that monitors the flood.

We do this by adding a transition into the Normal state.
Drag a Transition and put it inside the Normal state so
that its is connected to the borders of the state as
shown.

Ali Asgary, ADERSIM, York University, 2017

Define Actions for the Transition
Click on the Transition that you just added and
open its Properties.

Change the name to sensing.

Select Triggered by: Timeout

Type 1 for the Timeout and choose seconds

Ali Asgary, ADERSIM, York University, 2017

Define Transition properties
Make sure that your transition is selected and the property
window is open.

Add the following lines of codes into the action section:
//calculates distance between the flood and the sensor

distance = distanceTo(main.flood);

// sets the condition. If distance to flood is less than 10 it sets the water level from
0 (no flood) to flood level (1)

if (distance < 10)

waterLevel=1;

Ali Asgary, ADERSIM, York University, 2017

Add distance variable
Since we referred to two variables in our codes
in the previous slides, we need to define them.

Ali Asgary, ADERSIM, York University, 2017

Drag and drop a variable from the Agent toolset into
the Sensor window and change its properties as
shown.
Change its name to: distance
Change its type to : double

Add water level variable

Ali Asgary, ADERSIM, York University, 2017

Drag and drop another variable from the
Agent toolset into the Sensor window and
change its properties as shown.
Change its name to: waterLevel
Change its type to : int
Change the initial value to : 0

Transition from Normal state to
Flooding state

So if water level becomes 1 then the state of the
sensor changes from Normal to Flooding.

For this to happen we drag and drop a transition
to the Normal state as shown:

Define properties of the transition
Change the Name to: flooding
Change the Triggered by to: Condition
Add the following line of codes to the Action section:

//this increases the size of sensor
lamp.setScale(3);
//The following lines send a message to all people.
for (Person per:main.people){
per.receive("floodWarning");
}

Ali Asgary, ADERSIM, York University, 2017

Ad the Flooding state
Drag another state from the Statechart tools
and drop it into the Sensor window and attach
it to the flooding transition as shown

Ali Asgary, ADERSIM, York University, 2017

Change the properties of the Flooding
state

Change the name t: Flooding

Change the Fill Color to blue

Ali Asgary, ADERSIM, York University, 2017

Transition from Flooding state to Normal
We need to add
another transition that
returns the sensor state
from Flooding state to
Normal when the
water level is no longer
at the flooding level.

To do so drag and drop
another transition and
connect it’s end to
Flooding state and its
head to Normal state.

Ali Asgary, ADERSIM, York University, 2017

Ali Asgary, ADERSIM, York University, 2017

Define the properties of the new transition
Change Name to: normal
Change Triggered by to : Condition
Change the Condition to: waterLevel==0
Add the following lines of codes to the action section:

//this line reduces the size of the sensor symbole to 1
lamp.setScale(1);
//These lines inform people that flood situation is normal.
for (Person p:main.people){
p.receive("normal");
}

Run the model

Ali Asgary, ADERSIM, York University, 2017

Results
If you do not see any error, you will see that after
flood reaches to the Sensor, sensor symbol
increases. It also sends the warning to people that
we will see them in the next lesson.

Ali Asgary, ADERSIM, York University, 2017

• This was a simple way of creating behavior for
an agent using statecharts.

• We will create more complicated statecharts
in the future lessons.

• We will explain how to define people behavior
in lesson 5.

• Save your project.

Ali Asgary, ADERSIM, York University, 2017

